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It is assumed that the rate of increase of entropy and of internal energy depend 
on the temperature and on the first partial derivative of the temperature with 
respect to the coordinates and time. This assumption enables us to obtain a heat- 
conduction equation of the hyperbolic type from the law of conservation of energy. 

I. The equations which describe the propagation of heat in solids are given in [1-4 
etc]. These equations have the form of wave equations. Relaxation of the heat flow is as- 
sumed, and this leads to a heat-conduction equation of the hyperbolic type. In the present 
paper we adopt a different approach. We assume that the solid medium is not deformed and 
is at rest. The heat-conduction equation will be obtained from the law of conservation of 
energy ~5]: 

d U / d t  = - -  div q + e. (1 ,  I )  

E q u a t i o n  ( 1 . 1 )  mus t  b e  c o n s i d e r e d  t o g e t h e r  w i t h  t h e  s e c o n d  law o f  t h e r m o d y n a m i c s  

= - - q . v T / T  2 > O. ( 1 . 2 )  

To satisfy inequality (1.2) it is natural to assume that the heat flow q is in the 
opposite direction to the vector VT, i.e., 

q = - -  AvT" ( 1 . 3 )  

The function A will be called the heat conduction function or simply the heat conduc- 
tion. If we substitute Eq. (1.3) into inequality (1.2) we obtain A~ 0. In the simplest 
case of a linear Fourier heat conduction law (A = % = const) the heat conduction function 
is identical with the thermal conductivity. In the general case we will assume that A 
depends on temperature and on the first partial derivatives of the temperature with re- 
spect to the geometrical coordinates and time 

A --- A(T,  V T, OT/Ot).  (1.4) 

The heat conduction A determines the amount of heat which is transmitted from the hotter 
part of the body to the cooler part as a result of which there is a redistribution of the 
temperature. Hence, when there are no sources of heat A causes a heating of the "cold" parts 
and a cooling of the "hot" parts of the body simultaneously. Since the sign of the partial 
derivative 3T/3t indicates the direction of the process (heating or cooling), it can be 
assumed that the function A is independent of the direction of this process, i~ A should 
depend on I3T/3t I . If we assume that A is a scalar isotropic function of limited modulus, 
Eq. (1.4) can Be rewritten in the form [6] 
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A = A(T, N, IoT/ati), N ~ = v T : v  T, A <  ~ .  (1 .5)  

As far as the internal energy is concerned we will assume that it depends on T, N and 
3T/3t, i.e., 

U =  U (T, N, aT~at). (1 .6)  

The considerations which lead us to assume that A depends on [aT/3t[, do not apply to 
the function U. Hence, A and U, in general, depend on different variables. It is necessary 
to impose the following limitations on the dependence of the function U on its arguments: 

U = O  ~r T = O ,  O . .<U<oo ,  OU/OT=c>O. ( 1 . 7 )  

The quantity c is called the specific heat capacity. Substituting Eqs. (1.3) and (1.6) 
into Eq. (i.i) and taking Eq. (1.5) into account we obtain the heat conduction equation 

A A T +  O A N ' +  O A a T  - ~  OA [aT[_~ vN vT + ataY/atl v T v  + 

aT OU ON OU O~T 
+ 8 =  c + . - - +  

at ON Ot O (OT/OO at ~ 

(1.8) 

Note that the assumptions regarding relations (1.5) and (1.6) lead to a heat-conduction 
equation (1.8) with higher derivatives of T of the second order. If we assume that the func- 
tions A and U depend not only on the temperature but on its first partial derivatives, and 
also on higher-order partial derivatives, we obtain a heat-conduction equation with a higher 
derivative of the temperature of greater than the second order. We will now study the pro- 
perties of Eq. (1.8). 

It is well known [7] that the characteristic surfaces coincide with the surfaces of 
weak first-order discontinuity, andpropagate with the same velocity. Using the geometrical 
and kinematic relations on first-order discontinuities to obtain the velocity G of propaga- 
tion of the characteristics of Eq. [1.8), we obtain the quadratic equation 

OU 
aG ~ - -  2bG - -  e = O, a = 

a (aT~at) 

1 o r  OU OA or  sign --~- , e = A + - - ~  ON" 
2b = N On ON OlOT/Otf On 

(1.9) 

The form of Eq. [1.8) is determined by the number of real roots of the characteristic 
equation [1.9). When the condition b2'+ ae > 0 is satisfied Eq. (1.8) will have a hyper- 
bolic form. 

In the simplest case when we have 

A:- ~ , U= c 0+c I ~ T, (!.I0) 

w~tere ~, ~, Co, and ca are constants of the material, the heat-conduction equation for a 
one-4imens~onal rod takes the form 

O~T �9 O*T sign OT aT + ~  = Co + Cl - f  -~-  + clT 
Ox ~ ~ OxOt o-~ o--; ot~ (1.11) 

We obtain the following value for the velocities of propagation of thermal perturbations: 

- -  ~* + ] / !*  z t -  4)%T ~* - -  - -  ~ sign . at ax ( 1 . 1 2 )  G = 2c, T , 
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Equation (i. Ii) can be linearized. To do this we will make the substitution 

T = T o +  u, (1.13) 

where To is the average temperature of the rod at the initial instant of time. In the case 
when the temperature u varies only slightly with time, and its deviations from To are sma!l~ 
i.e., when 

iul C To, cl [Ou/Otl C co, (i.14) 

Eq. (I.ii), neglecting small terms, takes the form 

O~u O~u Ou 02u 
Ox 2 q- ~* -~- e = c o + q T  o OxOt ~ Or2 ( 1 . 1 5 )  

When ~ = 0 this equation agrees with the heat-conduction equation derived in [1-4]. The 
difference is solely in the boundary conditions, since the heat flows in [1-4] and in the 
present paper are defined differently. 

2. We will consider whether it is possible for a surface of second-order discontinuity 
to exist, on which the temperature undergoes an abrupt change~ To do this we will introduce 
a transition layer of thickness 2h, and we will write the equation of conserTation of energy 
(i.i) inside the transition layer in the form [8] 

G1U -+- AOT/Ov = G1U + -}- A § (OT/Ov) +. ( 2 . 1 )  

The superscript plus or minus signs denote the value of these quantities in front of 
or behind the discontinuity surface respectively, G~ is the velocity of motion of the sur- 
face of second-order discontinuity, and ~ is the normal to this surface. We will integrate 
Eq. [2.1) across the transition layer from the back to the front 

h h h 

Ov dv / 
- -h  - -h  --h 

( 2 . 2 )  

The functions U and h , according to our previous assumptions, are always bounded, so 
that Eq. [2.2) in the limit as h+0 takes the form 

A* IT] = O, IT] = T + -- T - ,  ( 2 . 3 )  

where A* is the average value of the thermal conductivity inside the transition layer. In 
the general case A* # 0, and we obtain from Eq. (2.3) that the temperature of the surface of 
second,order discontinuity is continuous 

[TI = O. 
(2.4) 

Hence, on a surface of second-order discontinuity only the first and higher partial 
derivatives of the temperature with respect to the coordinates and time will undergo an 
abrupt change. To find the rate of propagation of the surface of second-order discontinuity 
we w~ll write the law of conservation of energy on this surface in the form [8] 

G [U] = - -  [AOT/Ov]. ( 2 . 5 )  

W]ien heat propagates in the solid we may encounter the case when a particular isother- 
mal surface exists, which is at the same time a surface of second-order discontinuity. We 
will consider an example in which such a situation occurs. Consider a solid uniformly heated 
up to a temperature To. Suppose tNat at the initial instant of time when t = 0 a point source 
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of heat begins to act at a certain point in the solid. For t > 0 part of the solid becomes 
heated. The heated region will form a certain surface E which is isolated from the region 
with undisturbed initial temperature. The surface X will be isothermal, on which the temper- 
ature is the initial value T0, and in addition, i n general, on this surface the first 
partial derivatives of the temperature will undergo a discontinuity, i.e., Z is simultane- 
ously a surface of second-order discontinuity. By definition, the following equations hold 
on the surface Z: 

Ot ] = -~v = +- N-, = 0 ,  lOci=G1. ( 2 . 6 )  

It is seen from Eqs .  (2.6) that the velocity G~ cannot be found from the equation G~ =~ 
(~T/~t)+/N +, and it is therefore best to find it from the equal velocity of the isotherm 

E q u a t i o n  ( 2 . 5 )  can  b e  a p p l i e d  t o  t h e  s u r f a c e  X, t a k i n g  Eqs .  ( 2 . 6 )  and 
if written in the form 

GxU(T o, N-, G~)+ A(T  0, N-, G~)(OT/Ov)-=G~U(T o, O, G:). 

Using the additional relations 

( 2 . 7 )  

( 2 . 7 )  i n t o  a c c o u n t  

( 2 . 8 )  

GI = G:  sign - ~  ~-v = - -  N- sign - ~ -  , ( 2 . 9 )  

Eq. ( 2 . 8 )  t a k e s  t h e  fo rm 

G~ {V(V 0, N-, G~) - -U(T  o, O, G ~ ) } = A ( T  0, N-, G,)N-. ( 2 . 1 0 )  

When the internal energy O depends only on T and GT, and is independent of N, we obtain 
from Eq. (2.10) that there is no heat flow through the surface 

A(T 0, N-, GON- = O. 

E q u a t i o n  ( 2 . 1 1 )  h a s  two s o l u t i o n s  

(2.11) 

A- = 0, for N- = 0. (2.12) 

We will consider the second solution N- = 0. Then the requirement that the velocity of 
propagation of the surface E is limited implies 

(OT/Ot)- = 0 for N- = 0. 
( 2 . 1 3 )  

Hence ,  t h e  s o l u t i o n  N- = 0 l e a d s  t o  t h e  c o n d i t i o n  o f  c o n t i n u i t y  o f  Z o f  a l l  t h e  f i r s t  
partial derivatives of the temperature, i.e., X will be simultaneously an isothermal and a 
characteristic surface. Assuming that U is independent of N, from the equation G = G T, where 
G T fs the velocity of the isotherm, using Eq. (2.13) we obtain the equation 

A + NOA/ON = O. 

The function A is assumed to be analytic everywhere, so that as N->O from Eq. 
arrive at the first solution in Eq. (2.12). 

(2.14) 

(2.14) we 
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The above analysis enables us to conclude that the solution N-=0 is a special case 
of the first solution of Eq. (2.12). We will therefore assume that the solution of (2.11)is 

A(T o, N-, 61)= O. (2.15)  

Equation (2.15) plays the part of the boundary condition, from which we find GI and con- 
sequently the position of the surface ~. 

It is seen from Eq. (2.15) that the velocity of the surface E, generally speaking, is a 
variable quantity and depends on the initial temperature and temperature gradient of the 
isotherm. If A is independent of N or T, or of both N and T, the velocity GI will be inde- 
pendent of the corresponding quantities. This has important consequences in the experimental 
determination of the dependence of the heat conduction function on its arguments. In the 
special case when A depends only on IGTI, the velocity G~ is constant, and is a new thermo- 
physical characteristic. 

NOTATION 

U, internal energy; A,heat conduction function; ~, entropy production velocity; T, 
absolute temperature; q, heat flux vector; s, internal sources of thermal energy; t, time; 
N, temperature gradient modulus; G, characteristic propagation velocity; G~, propagation 
velocity of a strong discontinuity surface; GT, propagation velocity of isothermal surface; 
~, ~, co, c~, thermophysical constants of material. 
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